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ABSTRACT 

Sources of misunderstandings when evaluating kinetic parameters from thermogravimetric 
(TG) curves are discussed. A simple method for calculating Arrhenius parameters, suitable 
for implementation on a PC connected to the TG apparatus, is presented. The results 
obtained with calcium oxalate are discussed with respect to their ability to predict thermal 
behaviour in several experimental unctions: agreement with experimental data is satisfac- 
tory. This is not so when using some literature-cited kinetic parameters, which fail to 
represent the same TG curves from which they are extracted. Suggestions are derived for 
design of a modern TG apparatus connected to a PC. 

INTRODUCTION 

Thermoanalytical methods are more and more frequently used to char- 
acterize materials [l], to obtain chemical and structural information [1,2] 
and, mainly, to predict material behaviour under extreme working condi- 
tions [3,4]. However, the strict dependence of the results obtained on 
experimental conditions often are not taken into account, even though the 
“fathers” of thermoanalysis clearly pointed out these constraints [5]. The 
reasons for this may be the difficulties of modelling the behaviour of a 
heated sample without a powerful calculating tool [6-101. 

Possible misunderst~dings were ~ghli~ted during the 9th ICTA (Inter- 
national Congress on Thermal Analysis) ill] together with the need to 
check, for instance, the predictive power of a kinetic model obtained from 
TG data. The goal of the present work can thus be summarized by the 
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following points. (i) Definition of a mathematical model of heat transfer 
during a TG experiment. (ii) Identification of parameters affecting kinetic 
measurements by TG. (iii) Implementation of a simple model for extracting 
kinetic parameters from TG measurements, in a way which is suitable for 
readily available PCs when connected to the TG apparatus. (iv) Checking 
the predictive power of the model on the thermal decomposition of calcium 
oxalate. (v) Discussion of the limits and significance of such an approach 
with respect to the use of obtained data. (vi) Introduction of some sugges- 
tions for refining the calculating procedure and for designing modern 
instruments. 

EXPERIMENTAL 

Thermogravimetric measurements were carried out using a Per-kin-Elmer 
TGS-2 apparatus, in a dynamic nitrogen atmosphere flowing at 50 ml 
mm-‘. TG data were collected and processed by a Perkin-Elmer 3700 Data 
Station operating in PETOS rev. D, using TADSOFT to read acquired data 
and BASIC rev. A to process the data. The calcium oxalate monohydrate 
was an analytical grade commercial product (from Carlo Erba RPE). 

Model and symbols 

When a solid sample S is heated it can react as follows 

S-+P+G 0) 

where P is a solid product and G is the evolved gas. The kinetics of this 
reaction are generally assumed to obey the Arrhenius law in the form 

- (dIV/dt) = 2 exp( -E/M’) IV* (2) 

where W is the fraction of reagents present (or 1 - IV is the extent of 
reaction), t is the time (s), T is the absolute temperature (K), R is the gas 
constant (J K-’ (apparent g mol>-‘), Z is the pre-exponential factor (s-l), 
E is the activation energy in (J (apparent g mol) - ‘> and N is the apparent 
order of reaction. 

The simplest way to approach the measurement of V’ expe~ment~ly is to 
define it as follows 

w=(W1-_m,)/(mi-m,) (3) 

where m is the actual mass (at a given time), m, is the initial mass, and m, 
is the final mass. 

The meaning of IV, as well as 1 - W which is often used as the degree of 
reaction, can be understood physically when working under stoichiometric 
constraints. If Ms and M, are the actual masses of S and P respectively 
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during the reaction, and if the stoichiometry implies that one mass unit of S 
gives b mass units of P (b < l), then 

m=Ms+M, (4 

mi=Ms+M,/b (5) 

mf = Wlib (6) 

Using these relationships, IV defined above corresponds to Ms/mi whilst 
1 - W corresponds to M,/m,, i.e. they represent linear relations~ps with 
respect to the mass of the reactant or of the product 

W=(m-m,)/(mi-m,)=(Ms+Mp-Msb-Mp)/(mi-mib) 

= McJmi (7) 

l- W=(mi-m)/(mi- md = (MS + Mdb - MS - Md/(mf/b - mf> 

= MP/+=f o-0 

For the sample heating rate B = dT/dt (“C s-l), the eqn. (2) may be 
rewritten as 

-(dW/dT) = (Z/B) exp(-E/RT)WN (9) 

Assuming B to be constant during the reaction, i.e. equal to the controlled 
programmer heating rate B,, it is possible to derive from eqn. (9) an 
expression for calculating 2, E and N from experimental TG curves, i.e. 
from a set of (IV, T) couples identified as W( i, j), T( i, j) with i = 1; . . , iVj 

for NJ points for each jth curve 

log{ -D,,‘D,) + log B = log Z - (~/2_3~)(l/T) + N log W (IO) 

where 

DW= W(i, j) - W(i - 1, j) (11) 

D,= T(i, j) - T(i- 1, j) (12) 

Iv= Fv(i, j) 03) 

T= T(i, j) (14) 

B=B(j) 05) 

Provided that the set of (I/t/7’) couples gives values sufficiently close to 
allow numerical differentiation (many close points are available when a PC 
is connected to the TG instrument), it is possible to make a linear regression 
analysis of log( - D,/D,) -t- log B vs. l/T and log W and to calculate Z, E 
and N. In the present work, kinetic parameters were calculated in this way, 
by first choosing a given reaction step, then slightly smoothing the experi- 
mental curves and finally by performing least-squares linear regression 
analysis in a selected W range (generally 98-256 for reducing the contribu- 
tion of points where the numerical derivatives approach zero). 



128 

The above method is based, as others [6--10,12,13], on the assumption 
that the sample temperature is very close to the external pro~ammer 
temperature, and that the sample heating rate B is constant. In practice only 
the programmer (heater) heating rate BP is constant whilst the sample 
heating rate B is not. Consequently, the programmer temperature (measured 
by the instruments) does not correspond to the sample temperature. Even 
when the measured temperature is “ that of the sample”, i.e. obtained from a 
probe very close to the sample itself, heat flow between sample and probe 
must be considered. In this case the difference between sample temperature 
and the measured temperature is slightly reduced, but still exists. 

In addition to eqn. (2), a more realistic representation of the sample 
temperature could be derived, when considering also an energy balance 
between Ql (heat per unit time transferred between the environment, i.e. the 
programmer or the controlled heater, and the sample holder) and Q2 (heat 
absorbed or evolved per unit time to increase or decrease the holder and 
sample temperature and to balance reaction enthalpy). The heat flows Ql 
and Q2 may be expressed as functions FNM( . . . , . . . ) of operational param- 
eters 

Ql = Fll(& Tp - T) 06) 

Q2 = F21(CT,,, dT/dt) + F22(m, C,, dT,‘dt) + F23(m, H, dW/dt) 

07) 

where k represents a set of transfer coefficients, Tp is the programmer 
temperature, T is the temperature of the sample, assumed to be the same as 
that of the holder, CT., is the thermal capacity of the holder, m is the mass 
reacting, C, is the specific heat of the mass reacting, H is the reaction 
enthalpy and t is the time. Regardless of the explicit form of the operational 
functions Fll and F21-F23, some considerations must be taken into 
account: Fll, as a general flow promoted by the driving force Tp - T, is 
reduced to zero when T approaches Tp; F21 and F22, as heats spent to 
increase temperature, are reduced to zero when dT/d t approaches zero; 
F22 and F23, which are connected with the sample, are reduced to zero 
when the mass m approaches zero. 

By equating Ql and Q2, as an energy balance, and taking into account 
the above considerations, the following relationship can be derived 

Tp - T = (dT/dt) Al + mA2 (18) 

where Al and A2 represent coefficients which depend on all the variables 
describing Fll and F21-F23, i.e. k, CT-,, m, C,, H, T, dT/dt, dW/dt. 

If Tp is considered to be an independent variable, i.e. the abscissa, eqn. 
(10) may be rewritten 

log[(-1),/D=~t(D=~//D,j] +log B 

=log Z- (&‘2.3R)[l,‘(T,+ (T- T,)] +N log W (1% 
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Using the appro~matio~s 

D,/‘D, = (dT~/d~~~d~/dT~ = 3,/B (20) 

‘/[Tr’(T- T,)] = V(Tp[l+ (T- T,)/T,) = (VT,)[l + CT,- T)/T,] 

(21) 

eqn. (19) becomes 

log( - L&,+) + log BP) = log Z - ( E,‘2.3R )(1/T,) f A’ log W 

-( E/2.3R)(Tp- T)/T,Z (22) 

where the symbols have the same meanings as in eqn. (lo), with the addition 
of D,. = T,(i, j) - T,(i - 1, j), Tp = Tp(i, j) and BP = B,(j). 

As shown by eqn. (18), the sample temperature T approaches Tp, and 
B = dT/dt approaches BP = dT,/dt (constant instrumental heating rate), at 
the point where the sample mass and/or heating rate are sufficiently low. 
Under this condition the last term in eqn. 22 can be neglected and this can 
then be used to calculate kinetic parameters, being similar to eqn. (10). 
When the above condition is not satisfied, eqn. (22) will allow the calcula- 
tion of kinetic parameters provided that TP - T is also recorded. 

RESULTS 

Tn Figs. 1-3 the experimental TC curves of calcium oxalate are given as 
M;-’ versus T for two sample masses and two heating rates for the three 
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Fig. 1. Experimental TG curves for reaction step 1: dehydration of calcium oxalate monohy- 
drate. W= (m - mr)/( mj - mf); T is the programmer temperature in o C; B is the pro- 
grammer heating rate in ‘C min-I; mi and mf are the initial and final mass, respectively, in 
mg. Curve a, mi =lO.O, mf = 8.8, 3 = 2.5; curve b, m, = 20.1, mf =17.6, B = 2.5; curve c, 
mi =lO.O, mf = 8.8, B = 20; curve d, mi = 20.0, mE ==17.5, B = 20. 
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Fig. 2. Experimental TG curves for reaction step 2: decomposition of calcium oxalate. W 
(m - m t )/( m i - m f); T is the programmer temperature in o C; B is the programmer heating 
rate in “C mm-‘; mi and 112 f are the initial and final mass, respectively in mg. Curve a, 
m,=8.7, m,=6.9, B=2.5; curve b, mi=17.5, m,==13.7, Bz2.5; curve C, mi=8.7, 
mF = 6.9, B = 20; curve d, mi =17.4, mf =13.7, B = 20. 

reaction steps 

CaC,O, + H,O -+ CaC,O, + H,O t (step 1) 

CaC,O, -+ CaCO, + CO f (step 2) 

CaCO, -+ CaO + CO, t (step 3) 

Figures 4-6 show calculated TG curves corresponding to the experimen- 
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Fig. 3. Experimental TG curves for reaction step 3: decomposition of calcium carbonate. 
W = (m - m f)/( m i - m f); T is the programmer temperature in o C; B is the programmer 
heating rate in OC min-‘; tni and m f are the initial and final mass, respectively in mg. 
Curve a, mi =6.9. ml = 3.9, B= 2.5; curve b, mi =13.6, m, = 7.7, B=2.5; curve c, 
mi=6.8, m,=3.9, B=20;curved, miz13.6, m,=7.7, B=20. 
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Fig. 4. Calculated TG curves for reaction step 1: dehydration of calcium oxalate monohy 
drate. The kinetic parameters from the best-fit of the corresponding curves in Fig. 1 are Z 
(s-r), E (kJ mol-‘) and N. Curve a, Z=1.84X10’2, E=117.4, N= 0.597; curve b, 
Z=1.02X107, E = 79.2, N= 0.365; curve c, Z=1.17X106, E= 70.0, N= 0.530; curve d, 
Z= 4,05x104, E = 59.5, N= 0.500. 

tal ones of Figs. 1-3. These are calculated by integration of eqn. (9) using 
kinetic parameters obtained through linear regression (best-fit) of eqn. (IO), 
applied to each TG curve of Figs. f-3. The figure legends give the values of 
the kinetic parameters. 
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Fig. 5. Calculated TG curves for reaction step 2: decomposition of calcium oxalate. The 
kinetic parameters from the best-fit of the corresponding cnrves in Fig. 2 are 2 (s-l), E (kJ 
mol-‘) and N. Curve a, Z= 6.42x10”, E = 284.5, N = 0.807; curve b, Z = 1.05 X 10t4, 
E = 238.0, N = 0.716; curve c, Z= 5.45X1O14, 
10r4, E = 242.9, N== 0.715. 

E = 246.8, N= 0.685; curve d, Z =1.60x 
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Fig. 6. Calculated TG curves for reaction step 3: decomposition of calcium carbonate. The 
kinetic parameters from the best-fit of the corresponding curves in Fig. 3 are Z in (.a-*), E in 
(kJ mol-r) and N. Curve a, 2 = 1.40 X lo*, E = 200.1, N = 0.368; curve b, Z = 2.41 X 107, 
E=190.4, N=O.374; curve c, Z=X.98X107, E=187.6, N=0.382; CUN% d, Z=4.51X105, 
E = 160.2, I’? = 0.397. 

From linear regression analysis of all available data (see Figs. 7-3) other 
values are obtained. The ability of these latter values to represent the 
experimental curves is shown in Figs. 7-9. 

Calculated TG curves obtained using kinetic parameters from ref. 14, as 
an example of recent literature data, are given in Figs. 10-12. Those 
obtained using the data processing method supplied with the TG instrument 
used in this work are given in Figs. 13-15. 
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Fig. 7. Calculated TG curves for reaction step 1: dehydration of calcium oxalate monohy- 
drate. The kinetic parameters from the simultaneous best-fit of ail the curves in Fig. 1 are 
reported in Table 1, BF2. Curve a, B - 2.5 * C mm-‘; curve b, B = 20* C min-‘. 
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Fig. 8. Calculated TG curves for reaction step 2: decomposition of calcium oxalate. The 
kinetic parameters from the simultaneous best-fit of all the curves in Fig. 2 are reported in 
Table 1, BF2. Curve a, B = 2.5”C mm-‘; curve b, B = 20°C mm’. 

The complete set of kinetic parameters, together with other literature 
data, is summarized in Table 1 to allow direct comparison. In ref. 15 there is 
no direct evidence of pre-exponenti~ factors, so those calculated by other 
authors [16] were used. Sources of data are given in the column headings: 
BFl is the best-fit of eqn. (10) applied to the TG curves at the lower mass 
and heating rate, i.e. 10 mg and 2.5 o C mm-‘; BF2 is the same applied to all 
the reported curves; PE is calculation using the Per~n-Elmer data processing 
method supplied with the instrument, using all the reported curves and two 
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Fig. 9. Calculated TG curves for reaction step 3: decomposition of calcium 
kinetic parameters from the simultaneous best-fit of all the curves in Fig. 3 
Table 1, BFZ. Curve a, 3 = 2.S°C min-r; curve b, B = 20°C mm-‘. 

carbonate. The 
are reported in 
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Fig. 10. Calculated TG curves for reaction step 1: dehydration of calcium oxalate monohy- 
drate. The kinetic parameters are from ref. 14. Curve a, B = 2.S” C min-‘; curve b, 
B=20°Cmin. 

others recorded with 10 mg at loo C min-’ and 10 mg at 40 o C min-I, at 
20% conversion; R14, Rf5 and R16 are literature data from refs. 14-16. 

DISCUSSION 

The best-fit of eqns. (10) or (22) allows calculation of kinetic parameters 
from a single TG curve, as well as from many curves at different heating 
rates and/or masses. 
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Fig. Il. Calculated TG curves for reaction step 2: decomposition of calcium oxalate. The 
kinetic parameters are from ref. 14. Curve a, B = 2.5“ C min-‘; curve b, B = 2O’C min-‘. 
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Fig. 12. Calc~at~ TG curves for reaction step 3: decomposition of calcium carbonate. The 
kinetic parameters are from ref. 14. Curve a, B = 2.5 O C min- ‘; curve b, B = 20 * C mint. 

When Figs. 4-6 are compared with Figs. 1-3, a good agreement is found 
even if the kinetic parameters differ considerably (depending on the curves 
used to calculate them). This accounts for a good self-predictive power, i.e. 
the ability to reconstruct the original TG curves. This is not a poor result 
when observing other values which fail [14). From the complete set of TG 
curves a unique triplet of kinetic parameters may be obtained. However, the 
predictive power, i.e. the ability to describe all the TG curves, is reduced as 
shown by a comparison of Figs. 7-9 with Figs. 1-3. Differences from the 
experimental curves in Figs. 1-3 become more relevant when considering 
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Fig. 13. Calculated TG curves for reaction step 1: dehydration of calcium oxalate monohy- 
drate. The kinetic parameters are from Perkin-Eher data processing of curves la-ld plus 
two others (see text) at 20% reaction (reported in Table 1 as PE). Curve a, B = 2.5 o C min-‘; 
curve b, B = 20DC min-‘. 
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Fig. 14. Calculated TG curves for reaction step 2: decomposition of calcium oxalate. The 
kinetic parameters are from Perkin-Elmer data processing of curves Za-2d plus two others 
(see text) at 20% reaction (reported in Table 1 as PE). Curve a, B = 2S°C mm’; curve b, 
B = 20°C min-‘. 

curves calculated from literature data (Figs. lo-12), whilst those produced 
using the Perkin-Elmer data processing method (Figs. 13-15) are slightly 
more displaced. 

A simple residual standard deviation is not suitable for expressing 
quantitatively the ability of the calculated curves to represent the experimen- 
tal curves (predictive power). This is because the squaring of differences 
causes the direction of the shift to disappear. In particular, the predictive 
power of curves which are shifted with respect to the experimental curves 
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Fig. 15. Calculated TG curves for reaction step 3: d~ompositioR of calcium carbonate. The 
kinetic parameters are from Perkin-Elmer data processing of curves 3a-3d plus two others 
(see text) at 20% reaction (reported in Table 1 as PE). Curve a, B = 2S”C min-‘; curve b, 
B = 20°C mm-‘. 
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TABLE 1 

Kinetic parameters for the three steps of the thermai decomposition of calcium oxalate 
according to several sources. Residual standard errors are reported in parenthesis for data 
obtained in this work 

BFl BF2 R14 PE R16 a R15 

step 1 
z (s-l) 1.84 x lo’* 9.24 x lo4 2.43~10’ 1.77~10’ 4.33~10” 2.80~10~ 

(1.78 x 1012) (4.07 x 104) 
E (kJ mol-‘) 117.4 62.1 86.0 81.2 63.0 92.1 

(3.6) (1.8) 
N 0.597 0.404 1 1 0.63 1 

(0.035) (0.030) 

Step 2 
z (SC’) 6.42 x 10” 4.34x 10” 7.27 x lOI 9.11 x 10” 7.27 x 1015 2.33 x 1Ol5 

(3.39 x 10’7) (3.14X 10”) 
E (kJ mol-‘) 284.5 203.7 272.6 222.4 258.4 309.8 

(3.4) (4.8) 
N 0.807 0.579 0.7 1 0.75 0.7 

(0.017) (0.030) 

Step 3 
z (s-l) 1.40x10* 5.55 x 10s 7.14x10’ 5.70~10~ 2.77~10” 4.33~10~ 

(0.56 x 10’) (1.90x 105) 
E (kJ mol-‘) 200.1 160.4 227.3 196.3 201.1 163.3 

(3.5) (3.0) 
N 0.368 0.358 0.4 1 0.36 0.4 

(0.022) (0.023) 

a The Z reported values for steps 1 and 2 were considered to be in units of min-‘: if in s-t 
as for the other reported values agreement with experimental data fails extensively (the 
curves are displaced toward higher temperatures by hundreds of degrees). 

could be evaluated as being similar to the predictive power of curves which 
cross the experimental curves. In fact, the latter are better than the former 
for predicting the behaviour of the sample. 

To give a quantitative representation whilst taking account of the above 
restriction, the difference between calculated and experimental curves are 
reported in Table 2 as temperature differences at the points where the 
extents of reaction are 25% ( W= 0.75), 50% (IV = 0.5) and 75% (IV= 0.25). 
The sources of the kinetic parameters are as given in Table 1. 

The best agreement with experimental data is displayed by BFl with 
respect to the a curves. This accounts for the self-predictive ability of the 
model, i.e. giving data from which kinetic parameters may be derived. 
However, this is not a measure of the predictive power in a wide range of 
experimental conditions. Looking at all data, the predictive power shows the 
sequence BF2 > FE > BFl > R16 > R14 > Rl5. The relationship between 
BF2 and BF1 is obvious since BF2 uses all the curves whilst BFl only uses 
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TABLE 2 

Temperature differences between experimental TG curves for the three steps of the thermal 
decomposition of calcium oxalate and those calculated using different sources for kinetic 
parameters at extents of reaction of 25% 50% and 75% curves a, 10 mg, 2.5 o C mm’; curves 
b, 20 mg, 2.5OC rnin-‘; curves c, 10 mg, 20°C min-‘; curves d, 20 mg, 20°C min-‘. The 
symbols << and Z+ indicate values much less than zero and much greater than zero 
respectively. 

Curves a 

Step 1 25% 
50% 

75% 
Step 2 25% 

50% 
75% 

Step 3 25% 
50% 
75% 

Curves b 
Step 1 25% 

50% 
75% 

Step 2 25% 
50% 
75% 

Step 3 25% 
50% 
75% 

Curves c 

Step 1 25% 
50% 
75% 

Step 2 25% 
50% 
75% 

Step 3 25% 
50% 
75% 

Curves d 
Step 1 25% 

50% 
75% 

Step 2 25% 
50% 
75% 

Step 3 25% 
50% 
75% 

BFl BF2 R14 PE R16 R15 Experimental 
values of T ( o C) 

-0 6 -25 -7 -15 -95 129 
-0 0 -31 -13 -23 - 105 138 
-1 -4 -37 -19 -30 - 114 144 

1 -3 -37 -8 1 - 158 439 
-1 -8 -40 -14 -1 < 450 
-1 -11 -41 -18 -2 << 459 

2 1 - 141 -13 19 >> 630 
1 -5 - 146 -19 19 >> 654 
1 -10 - 150 -28 19 >> 670 

6 12 -19 -1 -9 -89 135 
9 9 -22 -4 -14 -96 147 

11 8 -25 -7 -18 - 102 156 
12 8 -26 3 12 - 147 450 
14 7 -25 1 14 << 465 
17 7 -23 -0 16 < 477 
17 16 -126 2 34 X=- 645 
17 11 -130 -3 35 >> 670 
18 7 - 133 -11 36 >> 687 

9 -4 -29 -10 -30 
15 -7 -30 -11 -35 
20 -8 -33 -13 -39 
16 -1 -27 -3 13 
18 -4 -27 -6 14 
17 -7 -28 -11 13 
16 -2 < -2 36 
18 -8 <( -7 39 
19 -13 <( -16 41 

19 6 -19 0 -20 
27 5 -18 1 -23 
33 5 -20 -0 -26 
24 7 -19 5 21 
27 5 -18 3 23 
29 5 -16 1 25 
33 15 << 15 53 
38 12 << 13 59 
44 12 <i 9 66 

-109 
- 115 

< 
<< 
<< 
-=Z 

-99 
- 103 

(< 
<( 
< 
< 

162 
178 
190 
485 
500 
510 
715 
745 
765 

172 
190 
203 
493 
509 
522 
732 
765 
790 
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the a curves. PE also uses all the curves and so gives better results than BFl. 
A particularly good agreement is found for the b and d curves, where the 
mass and heating rate perturbations of eqn. (22), induced by eqn. (18) are 
higher: this is a result of the fact that two more curves, at higher heating 
rates, were used to improve the linear regression analysis from 4 to 6 points. 
In such a way, the ‘weight’ of the results from perturbated curves were 
increased and consequently the kinetic parameters obtained better describe 
the above curves. The poor agreement of R16 could arise from a difference 
in the experimental conditions even if 2 values were held to be in units of 
min-’ for step 1 and step 2 (other 2 values are reported in units of s-i). 
Using the other sources, the calculated curves lie so far from the experimen- 
tal data that the only possible interpretation is that the experimental data 
are wrong or are reported in a misleading form in ref. 16. The fact that the 
predictive power of BFl decreases from the a curves to the d curves, whilst 
the predictive powers of the other curves are randomly distributed, is a 
result of the effect of heat transfer described by eqn. (18): when kinetic 
parameters are obtained from data at a lower mass and heating rate they are 
affected less by perturbation of the model. However, when the same parame- 
ters are obtained by ‘mixing’ data at higher masses and heating rates these 
parameters contain the perturbation and adapt themselves to describe the 
complete set of data, thus becoming different from the ‘true’ parameters. 
This situation is common to all methods which employ more than one TG 
curve to calculate parameters. 

By comparing for example the BF2 kinetic parameters with the PE kinetic 
parameters (Table l), it may be seen that a similar reconstruction could also 
occur when using a different set of parameters, both sets being ‘true’ with 
respect to representation of curves. The values obtained with BFl and BF2 
have small residual standard errors, thus confirming the good linear fit of 
eqn. (10). (The apparent high residual standard errors of 2 values are 
caused by the representation being linear whilst the calculation, as for E and 
N, is logarithmic: 2.3s (log X) = S(x)/x.) Table 1 also shows that the 
differences between BFl and BF2 values become lower when passing from 
step 1 to step 2 to step 3. This observation agrees with eqn. (22) if the 
perturbation induced by the last term is considered to be lowered as Tp 
values in the range examined become larger. Consequently, a combination of 
data obtained at different heating rates approaches a single curve processing, 
as kinetic parameters approach the ‘true’ ones. 

It has been shown above that triplets (2, E, N) having an acceptable 
agreement with experimental data, defined as ‘true’, could have different 
individual values. The approach used is simply a method of empirically 
representing a complex process with a simple relationship (eqn. (2)). The 
common reporting of just two kinetic parameters, as 2 and E or E and N, 
could thus give no useful result because of their inability to represent data. 
Any attempt to assign chemical significance to kinetic parameters, such as 
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activation energy or order of reaction, may fail not only because eqn. (2) 
cannot match the real chemical process 112,171, but also because eqn. (18) 
would need to be considered also. In conditions where sample mass and 
heating rate are sufficiently low eqn. (18) can be ignored and consequently 
eqn. (22) is not influenced by the final term and so becomes similar to eqn. 
(10). Thus the best values for describing the thermal decomposition of 
calcium oxalate are those reported in Table 1 in column BFl. 

Limiting the best-fit range to W values approaching unity, i.e. 0.99 x IV 
< 0.70, also reduces the contribution of eqn. (18) because of limited evolved 
or absorbed heat and small variation in sample thermal capacity. However, 
since the last part of the process is disregarded the N value no longer 
influences curve representation, thus reducing the predictive power. More- 
over, it is not easy to construct a general criterion for establishing how low 
mass and heating rate must be or the range where IV must lie, owing to their 
dependence on sample characteristics as well as on those of the instrumenta- 
tion. Analysis of predictive power could be a good way of estimating the 
above limits. This may be done by lowering the mass of the sample and/or 
lowering the heating rate to the point where the TG curve, calculated using 
kinetic parameters obtained from a previous experimental curve, matches 
the new experimental curve satisfactory. This is not the same as looking for 
convergence of (2, E, N) values which may differ in each calculation. 

Even if difficult to interpret in a chemical sense, the kinetic parameters 
are useful for describing conditions not easily achievable as working condi- 
tions for ablating materials [3,4]. The choice of a given triplet depends on 
the subsequent processing of data to calculate temperatures against depth 
and time. If the model is complex, as reported in ref. 3 and 4 or as the CMA 
program (aerotherm Charring Material thermal response and Ablation) used 
by the U.S. Air Force Rocket Propulsion Laboratory, a better triplet would 
be that representing experimental data at the lowest sample mass and 
heating rate (as BFl). The model used for subsequent calculations takes into 
account mass, density, porosity, conductivity, emissivity, gas evolution, etc., 
so requires just an empirical description (the triplet (Z, E, N)) of the 
isolated reaction. If on the other hand a simple model is used, for instance 
eqn. (2) alone, the choice of a triplet derived from simultaneous best-fit of 
all available data (as BF2) would be preferred. 

Finally, a suggestion to TG instrument designers: if the sample tempera- 
ture could be monitored as well as the programmer temperature during 
experiments, or better, if the sample temperature could be controlled as in 
DSC, eqns. (10) or (22) could be used regardless of eqn. (18), with the 
possibility of describing a thermal degradation with limited influence of 
sample and apparatus. 
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